Femtosecond pulse shaping using plasmonic snowflake nanoantennas

نویسندگان

  • Rüştü Umut Tok
  • Kürşat Şendur
چکیده

We have theoretically demonstrated femtosecond pulse manipulation at the nanoscale using the plasmonic snowflake antenna’s ability to localize light over a broad spectrum. To analyze the interaction of the incident femtosecond pulse with the plasmonic nanoantenna, we first decompose the diffraction limited incident femtosecond pulse into its spectral components. The interaction of each spectral component with the nanoantenna is analyzed using finite element technique. The time domain response of the plasmonic antenna is obtained using inverse Fourier transformation. It is shown that the rich spectral characteristics of the plasmonic snowflake nanoantenna allow manipulation of the femtosecond pulses over a wide spectrum. Light localization around the gap region of the nanoantenna is shown for femtosecond pulses. As the alignment of incident light polarization is varied, different antenna elements oscillate, which in turn creates a different spectrum and a distinct femtosecond response.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plasmonic antennas as design elements for coherent ultrafast nanophotonics.

Broadband excitation of plasmons allows control of light-matter interaction with nanometric precision at femtosecond timescales. Research in the field has spiked in the past decade in an effort to turn ultrafast plasmonics into a diagnostic, microscopy, computational, and engineering tool for this novel nanometric-femtosecond regime. Despite great developments, this goal has yet to materialize....

متن کامل

Control of plasmonic nanoantennas by reversible metal-insulator transition

We demonstrate dynamic reversible switching of VO2 insulator-to-metal transition (IMT) locally on the scale of 15 nm or less and control of nanoantennas, observed for the first time in the near-field. Using polarization-selective near-field imaging techniques, we simultaneously monitor the IMT in VO2 and the change of plasmons on gold infrared nanoantennas. Structured nanodomains of the metalli...

متن کامل

Femtosecond-Pulsed Plasmonic Nanotweezers

We demonstrate for the first time plasmonic nanotweezers based on Au bowtie nanoantenna arrays (BNAs) that utilize a femtosecond-pulsed input source to enhance trapping of both Rayleigh and Mie particles. Using ultra-low input power densities, we demonstrate that the high-peak powers associated with a femtosecond source augment the trap stiffness to 2x that of nanotweezers employing a continuou...

متن کامل

Tailoring spatiotemporal light confinement in single plasmonic nanoantennas.

Plasmonic nanoantennas are efficient devices to concentrate light in spatial regions much smaller than the wavelength. Only recently, their ability to manipulate photons also on a femtosecond time scale has been harnessed. Nevertheless, designing the dynamical properties of optical antennas has been difficult since the relevant microscopic processes governing their ultrafast response have remai...

متن کامل

Plasmonic enhanced two-photon absorption in silicon photodetectors for optical correlators in the near-infrared.

A high-density array of plasmonic coaxial nanoantennas is used to enhance the two-photon absorption (TPA) process in a conventional silicon photodetector from a mode-locked 76 MHz Ti:sapphire laser over a spectral range from 1340 to 1550 nm. This enhanced TPA was used to generate an interferometric autocorrelation trace of a 150 fs laser pulse. Unlike second-harmonic generation, this technique ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011